翻訳と辞書
Words near each other
・ Alphaville (film)
・ Alphaville Amiga Compilation
・ Alphaville discography
・ AlphaVille Pictures Copenhagen
・ Alphaville Suite
・ Alphaville, São Paulo
・ Alphavirus
・ Alphavirus infection
・ Alphawest
・ Alphawezen
・ AlphaWindows
・ Alphaxard Lugola
・ Alphazone
・ Alpha² Canum Venaticorum variable
・ Alpha–beta pruning
Alpha–beta transformation
・ Alphege of Wells
・ Alphege, or the Green Monkey
・ Alpheias (moth)
・ Alpheias baccalis
・ Alpheias bipunctalis
・ Alpheias conspirata
・ Alpheias gitonalis
・ Alpheias oculiferalis
・ Alpheias querula
・ Alpheias transferens
・ Alpheias vicarilis
・ Alpheidae
・ Alpheioides
・ Alpheios Project


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Alpha–beta transformation : ウィキペディア英語版
Alpha–beta transformation
In electrical engineering, the alpha-beta (\alpha\beta\gamma) transformation (also known as the Clarke transformation) is a mathematical transformation employed to simplify the analysis of three-phase circuits. Conceptually it is similar to the dqo transformation. One very useful application of the \alpha\beta\gamma transformation is the generation of the reference signal used for space vector modulation control of three-phase inverters.
==Definition==

The \alpha\beta\gamma transform applied to three-phase currents, as used by Edith Clarke, is
:i_(t) = Ti_(t) = \frac\begin 1 & -\frac & -\frac \\
0 & \frac & -\frac \\
\frac & \frac & \frac \\
\end\begini_a(t)\\i_b(t)\\i_c(t)\end
where i_(t) is a generic three-phase current sequence and i_(t) is the corresponding current sequence given by the transformation T.
The inverse transform is:
:i_(t) = T^i_(t) = \begin 1 & 0 & 1\\
-\frac & \frac & 1\\
-\frac & -\frac & 1\end
\begini_\alpha(t)\\i_\beta(t)\\i_\gamma(t)\end.
The above Clarke's transformation preserves the amplitude of the electrical variables which it is applied to. Indeed, consider a three-phase symmetric, direct, current sequence
:
\begin
i_a(t)=&\sqrtI\cos\theta(t),\\
i_b(t)=&\sqrtI\cos\left(\theta(t)-\frac23\pi\right),\\
i_c(t)=&\sqrtI\cos\left(\theta(t)+\frac23\pi\right),
\end

where I is the RMS of i_a(t), i_b(t), i_c(t) and \theta(t) is the generic time-varying angle that can also be set to \omega t without loss of generality. Then, by applying T to the current sequence, it results
:
\begin
i_=&\sqrt2 I\cos\theta(t),\\
i_=&\sqrt2 I\sin\theta(t),\\
i_=&0,
\end

where the last equation holds since we have considered balanced currents. As it is shown in the above, the amplitudes of the currents in the \alpha\beta\gamma reference frame are the same of that in the natural reference frame.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Alpha–beta transformation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.